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Note 

Automated Computation of Modified Equations* 

The calculation of the modified equation has proved to be a valuable aid in assessing 
the accuracy and stability of a given difference equation. The technique consists of 
expanding the difference equation in a Taylor series about some suitably chosen 
expansion center. The result is a differential equation, the so-called modified equation, 
and consists of the original differential equation that is modeled by the difference 
equation plus truncation error terms (for example, see Ref. [l]). For some purposes 
it is necessary to eliminate time derivatives from the truncation error terms by 
differentiating and substituting the modified equation into itself. The same procedure 
may be applied to systems of equations, making it suitable for areas of research such 
as numerical fluid mechanics. 

For complicated problems, an algebraic computer system is almost essential for 
the computation of modified equations. Massive amounts of algebra are required, the 
manipulations are quite tedious, and there is always the possibility of blunders. 
Warming and Hyett [2] have used FORMAC to treat the linear case. In this note, we 
describe two ALTRAN programs for nonlinear systems [3]. These programs were 
written with numerical fluid dynamics applications in mind, but are by no means 
limited to that application. The first program performs the Taylor series expansion 
for a single difference equation in two independent variables, and the modified 
equation is produced as input for the second program. The second program eliminates 
time derivatives from the truncation error terms. The resulting equation can be 
examined for undesirable properties, such as errors of negative order. Modified 
equations for several finite difference approximations to a given differential 
equation may also be analyzed to help choose the optimum numerical scheme 
for a particular application. Another use is the prediction of numerical stability 
conditions, .which can then be used as the basis for techniques for stabilizing finite 
difference algorithms. 

As a simple example of a problem that can be run with these programs, consider 
the one-dimensional continuity equation for a fluid dynamics problem: 

(1) 

where p is the density and u is the velocity. The diffusivity I may represent turbulence 
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effects or may be used as an artificial mass diffusion for numerical stability of the 
finite difference scheme, such as in the ICE algorithm [4]. One simple finite difference 
approximation to Eq. (1) is 

+ (1 -0) -j$-g- KP;+,, + Pi”> q+1,2 - bin + PE1) uL,21 

where 8,O < 0 < 1, is a time-centering parameter and pin is the density at grid point i 
and time level n. The velocity Ui+l/l and diffusivity .$i+l,a are defined at a point halfway 
between grid points i and i + 1, as in the ICE method, Expansion of Eq. (2) yields 
the modified equation 

(3) 

Assume that we are interested in the criterion for diffusional stability. It is necessary 
to eliminate all time derivatives from the truncation error terms of Eq. (3) by sub- 
stituting derivatives of Eq. (3) and the modified equation for u into Eq. (3). One must 
also approximate the pressure gradient in the momentum equation by the density 
gradient times the square of the sound speed, c2. The lowest order diffusional trunca- 
tion errors are found to be 

[ g = [(28 - 1) ; (U” + c”) - y %] 3. (4) 

If the effective diffusion coefficient 5 is negative, the difference equation (2) is unstable 
for .$ = 0. The original ICE technique was stabilized by providing a constant f such 
that LJ + 5 > 0 in each cell at each time step. A more accurate, less diffusive stabiliza- 
tion technique is to compute an explicit finite difference estimate of 5 at the half 
integer grid points and set 
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where /3, 0 < /3 < 1, is a free parameter that is normally set to unity. This algorithm 
is described in detail for all the equations in a two-dimensional fluid dynamics 
program in Ref. [5], where numerical examples are also presented. Although this 
example can be done by hand, it is tedious enough to make one appreciate the great 
convenience of automating the Taylor series expansions and time derivative elimina- 
tions. We emphasize that this simple example was chosen to preseve the simplicity 
of our presentation and that the programs have been applied to more complex 
problems. And even for simple cases, the lack of blunders is an advantage for those 
of us who do not enjoy doing mechanical algebraic manipulations. 

The ALTRAN programs represent a compromise among generality, efficiency, and 
computer resource requirements that allows them to be used on modest computers. 
For example, the basic time derivative elimination program makes a single differen- 
tiation and substitution of the modified equation into itself, so several runs may be 
necessary to eliminate all of the time derivatives. Reference [3] contains program 
modifications to allow as many passes through the algorithm as needed in a single 
run although running time increases. The user can also lift the restriction to two 
independent variables if the necessary workspace and computer time are available. 
Reference [3] moreover contains modifications to make the elimination code run 
faster and use less workspace, although there is a small penalty in the generality of 
the program. These possibilities illustrate the fact that the basic codes have the 
flexibility to be modified to fit a user’s requirements and computing facilities. 

The sample problem in this note was run on a CDC 7600. The expansion code 
used 32 set of central processor time and 36,513 words of workspace. The elimination 
code needed 3 runs for the system of two modified equations, which used a total of 
200 set and a maximum of 85,053 words of workspace. Although the run times and 
memory requirements are problem dependent, these values are typical of problems 
of the same complexity as the example. The workspace and running time requirements 
increase at least linearly with the number of terms and the rate of increase can even 
be exponential for some types of problems. 

Reference [3] contains a more detailed description, listings, test problems, and flow 
charts for these programs, as well as several examples of simple applications. This 
report is available from the authors and from the National Technical Information 
Service. 
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